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1. Introduction 

The kinetic Monte Carlo (kMC) method can be used to simulate a system whose 
evolution over time can be modeled as a chain of random events, where each 
random event depends only on the current state of the system.1 In particular, the 
kMC method has been used to simulate the growth of films,2–10 where the random 
events are instances of particles undergoing processes such as deposition, 
adsorption, desorption, diffusion, and chemical reactions. Typically, a kMC 
simulation uses an algorithm where at a given time step in the simulation, the set 
of all possible events and their associated rate constants or “propensities” (i.e., 
probabilities per unit time) is determined. One of these events is then randomly 
chosen to be executed, with the choice weighted according to the propensities of 
the possible events, and then the simulation time is advanced by – ln (𝑟𝑟) 𝑝𝑝tot⁄ , where 
𝑟𝑟 is a random number uniformly chosen from the open interval (0,1), and 𝑝𝑝tot is 
the sum of all the propensities of all possible events.1 To simplify the process of 
determining the set of possible events, the locations of the particles in the system 
are usually assumed to be restricted to be at or near the sites of a lattice, and events 
such as adsorption, diffusion, and so on, are centered near these sites. One can then 
determine the set of possible events by scanning the lattice and checking what sites 
are vacant or occupied with particular particle species. 

Implementation of the general kMC algorithm described above can be performed 
with varying degrees of optimization. A simple and straightforward but naïve 
implementation of a lattice-based kMC simulation scans through all 𝐿𝐿 sites of the 
lattice at each time step to generate the set of possible events afresh and then 
performs a linear search on the set of 𝑁𝑁 possible events in order to find one to 
execute, operations which are 𝑂𝑂(𝐿𝐿) and 𝑂𝑂(𝑁𝑁), respectively. The scaling of the 
latter operation can be improved to 𝑂𝑂(log2 𝑁𝑁)11 or, in some cases, can even be 
independent of 𝑁𝑁.12 If the events in the simulation have only local effects, that is, 
each event only immediately affects the sites in a small neighborhood near the site 
where the event is centered, then the scalability of the former operation can be 
improved by initially generating the set of possible events at the beginning of the 
simulation, and then, at each time step, only updating the possible events in the set 
that were affected by the execution of the event chosen at the step. Of course, these 
optimizations are more complicated to code than a naïve approach and thus present 
the opportunity to introduce bugs in a new implementation. Ideally, rather than have 
each researcher who employs a kMC method attempt to program such optimized 
implementations from scratch, there would be optimized implementations already 
available that researchers could adopt and apply in their own work. Such is already 
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the case for other kinds of atomistic numerical simulations, such as molecular 
dynamics or various ab initio methods. 

Nonetheless, kMC simulations have typically been implemented using ad hoc code 
written for a particular line of research.13 A few kMC codes are available that are 
designed to be of more general use, such as “CARLOS,”14,15 “CHIMP” 
HIerarchical Modeling Program,16,17 “MONTY,”18,19 and Graph Theoretical 
kMC.20,21 These take in input files that describe the available possible events of the 
system and their propensities. The “kmos” project13,22 is somewhat similar to these, 
except that it takes in an input file (written in Extensible Markup Language [XML]) 
in order to generate Fortran 90 code that contains the actual implementation of a 
kMC simulation. These codes tend to be more optimized than a typical ad hoc kMC 
code, but are still limited by what they allow as inputs. For example, CARLOS and 
Graph Theoretical kMC are designed to model reactions on surfaces. The means of 
specifying possible events in kmos precludes forms of deposition that involve 
shadowing (where one part of the growing surface blocks overshadows another part 
and prevents depositing atoms from reaching it). None of these codes would be 
capable of, for example, accommodating some kind of prepatterning or strain field 
to induce quantum dots, as in, for example, the work of Kuronen et al.5 or 
Kiravittaya and Schmidt.23 In short, while these codes have some advantages over 
purely ad hoc code, they may not have the desired flexibility needed by a researcher. 
In contrast to these codes are KMCLib24 and Stochastic Parallel PARticle Kinetic 
Simulator (SPPARKS).25 KMCLib is a Python module that employs a backend C++ 
library. Like the previously mentioned kMC codes, it can handle the simple case 
where possible events have fixed propensities that do not change over the course of 
the simulation. However, for more complicated kinds of events, users can provide 
their own custom Python classes to calculate propensities on the fly. SPPARKS is 
an open source C++ code that is written in a modular fashion so that it can be readily 
modified and extended. Typically, modifications come in the form of additional 
source files that define a class that the SPPARKS documentation calls an 
“application”. These applications are typically very specialized: one of them 
models a lattice whose sites are either occupied or unoccupied, with no allowance 
for multiple species of particles at a site; another simulates the diffusion of 
hydrogen and helium in an erbium lattice; another one implements the Potts 
mesoscale model of grain growth.26 Each application depends upon an underlying 
framework in SPPARKS for handling most of the process for maintaining a set of 
events and choosing an event to be executed. However, its applications are not 
entirely free of handling the lower level details of the kMC algorithm. For example, 
an application is responsible for determining which sites are affected by an event 
that is executed, and passing those sites to the underlying SPPARKS framework in 
order to ensure that the set of possible events is properly updated. Also, a given 
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application may use either an on-lattice or off-lattice kMC approach, and this has 
an impact on how SPPARKS represents a lattice. Since its framework is designed 
so that its interface is largely the same in both on-lattice and off-lattice applications, 
a “site” is simply a point in space with an integer label, and a lattice site is simply 
a site with a static location and a static set of neighboring sites. Currently, there 
does not appear to be functionality to grow a lattice along a particular direction, so 
if the simulation domain is set to be a certain size, then that presents a hard ceiling 
on the thickness of a film that may be grown in a simulation. 

This report introduces a new kMC code, “KMCThinFilm”, which unlike most of 
the aforementioned codes, is not an application, but rather a C++ library to be used 
to create applications that use the kMC method to simulate the growth of thin films. 
This library is designed to be, on the one hand, more general than codes such as 
CARLOS,14 but on the other hand, more tailored for the task of modeling thin films 
than a very general framework like SPPARKS.25 It is also designed so that any 
coding required from users of the “KMCThinFilm” library would pertain to the 
model that they wish to simulate, rather than to lower level details. That said, certain 
aspects of its implementation were inspired by the aforementioned kMC codes, 
especially “kmos”13,22 and SPPARKS.25 Section 2 describes the capabilities of the 
“KMCThinFilm” library and the concepts and some of the algorithms implemented 
within it. Section 3 describes example applications of the library that showcase its 
capabilities, and Section 4 shows the results of tests of its parallel algorithms. 
Finally, Section 5 presents concluding remarks. 

2. Concepts and Algorithms of the “KMCThinFilm” Library 

A lattice in the “KMCThinFilm” library is modeled as a stack of 2-dimensional 
arrays of cells, with each cell labeled with a triplet of integer indices, as illustrated 
in Fig. 1. Periodic boundary conditions always apply to the first 2 indices of a cell, 
but not the third. In a manner similar to that of SPPARKS,25 each cell (𝑖𝑖, 𝑗𝑗,𝑘𝑘) also 
effectively contains 2 1-dimensional arrays, one that holds integer values, here 
named 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖, and one that holds double precision floating-point values, here named 
𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖. The size of these arrays is the same for all cells. The physical meaning of the 
contents of the arrays is left up to the client application that uses the 
“KMCThinFilm” library; for a given application, they may be used to identify 
species of a basis of atoms within a cell, or the spatial coordinates of an atom in a 
cell in a possibly distorted lattice, or, for a simpler solid-on-solid application, the 
height of a column of atoms at (𝑖𝑖, 𝑗𝑗, 0). The lattice need not be cubic. If the cells 
are treated as those of a Bravais lattice with primitive lattice vectors 𝐚𝐚𝑖𝑖, 𝐚𝐚𝑗𝑗, and 𝐚𝐚𝑘𝑘, 
then the physical location of cell (𝑖𝑖, 𝑗𝑗,𝑘𝑘) may be said to be 𝐚𝐚𝑖𝑖𝑖𝑖 + 𝐚𝐚𝑗𝑗𝑗𝑗 + 𝐚𝐚𝑘𝑘𝑘𝑘. The 
sizes of the arrays in each cell of the lattice, as well as the maximum values of the 
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first 2 indices of a cell, are fixed when the lattice is initialized. However, additional 
planes may be added to the lattice at any time step of the simulation, unless the 
client application explicitly disallows this for the sake of parallel performance. 
When additional planes are added, by default the elements in the arrays in the cells 
of each new plane are set to zero. However, this default can be changed. 
Furthermore, the initial values of 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 and 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 in the new cells can be functions of 
the indices of these cells, or even of the contents of other cells in the lattice. This 
functionality could be used, for example, to initialize the spatial coordinates of 
atomic sites in a cell of a possibly distorted lattice. 

 

Fig. 1 Topmost planes of a lattice whose indices along the i and j directions are in the 
interval [0, imax] and [0, jmax], respectively. The i-, j-, and k-axes are not necessarily orthogonal. 

In the “KMCThinFilm” library, possible events that happen in the lattice are 
considered to be 1 of 2 kinds, “cell-centered” and “over-lattice”. Events of the cell-
centered kind originate at or in a neighborhood of a lattice cell, and the propensities 
of these events are affected by states of cells in that neighborhood. Adsorption, 
diffusion, and chemical reactions are examples of these kinds of events. Since the 
propensities of related possible cell-centered events are often calculated using the 
same or almost the same series of steps, they are treated as groups in the library. To 
implement a grouping of cell-centered events, the library needs a client application 
to provide the following: 

• A set of “offsets” from the cell about which these events are centered, on 
which the propensities of the events depend. For example, if the propensities 
of events at a cell in a square lattice depend upon the states of the nearest 
neighbors of that cell, then the offsets will include (−1,0,0), (+1,0,0), 
(0,−1,0), and (0, +1,0), in addition to the always present zero offset, 
(0,0,0). 

• A function or function object27 that determines the propensities, given an 
object that encapsulates the above-mentioned offsets and the cell about 
which an event is centered. The propensities are returned as an array, where 
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each element is the propensity of a possible event in the group. If an event 
cannot happen at this cell, its propensity is set to zero. 

• A set of functions or function objects, each of which executes a possible 
event from the group, given the cell about which an event is centered. 

Over-lattice events are presumed to have originated from some location well above 
the lattice, so the propensity of such an event is presumed to be unaffected by the 
effects of events within the lattice itself. Deposition is the main example of such an 
event. To implement these, the library needs a client application to provide the 
following: 

• A propensity per lattice plane area, which for deposition would be the 
number of monolayers deposited per unit time. 

• A function or function object that executes the event, given a randomly 
chosen cell at the top of the lattice. 

For both cell-centered and over-lattice events, optional additional sets of offsets 
may be supplied that indicate the relative locations of cells that would be changed 
by executing a possible event. These offsets may allow a simulation to run faster in 
a way that will be described later. 

When an event is executed, the indices of the cells of the lattice directly changed 
by this event are recorded. The indices of cells of any empty planes added by the 
event are also recorded. The offsets that define cell-centered events are used in 
conjunction with these recorded indices to determine which possible events have 
had their propensities changed due to the execution of the event. The set of possible 
events and their propensities in the simulation is adjusted accordingly. For example, 
let there be a simulation on a simple cubic lattice containing a single type of cell-
centered event that has asymmetrically arranged offsets (−1,0,0), (+1,0,0), and 
(0, +1,0) (in addition to the always present zero offset) and can change both the 
cell about which it is centered and the cell to the right of that cell. Figure 2 shows 
a diagram of the cells changed and affected by this event executing about cell 
(𝑎𝑎1,𝑏𝑏, 𝑐𝑐). The possible events that are centered near these affected cells will have 
their propensities changed. Cell (𝑎𝑎1, 𝑏𝑏, 𝑐𝑐) is changed, and the cells affected by the 
change to it have indices that are those of the changed cell plus the “reverse” of the 
event’s offsets, that is, (𝑎𝑎1 + 1, 𝑏𝑏, 𝑐𝑐), (𝑎𝑎1 − 1, 𝑏𝑏, 𝑐𝑐), and (𝑎𝑎1,𝑏𝑏 − 1, 𝑐𝑐). Propensity 
calculations are performed for each changed or affected cell. The number of 
calculations performed depends upon whether the aforementioned optional 
additional sets of offsets have been supplied. If these optional offsets have not been 
supplied (in addition to the required offsets needed to calculate propensities), then 
the calculations are performed according to a less efficient “auto-tracking” 
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algorithm. In this example, 4 propensity calculations would initially be performed, 
one for the changed cell and one for each of the affected cells. Cell (𝑎𝑎2, 𝑏𝑏, 𝑐𝑐), where 
𝑎𝑎2 = 𝑎𝑎1 + 1, is also changed, and the cells affected by the change to it are (𝑎𝑎2 +
1, 𝑏𝑏, 𝑐𝑐), (𝑎𝑎2 − 1, 𝑏𝑏, 𝑐𝑐), and (𝑎𝑎2,𝑏𝑏 − 1, 𝑐𝑐). Then, 4 more propensity calculations 
would be performed, again for the changed cell and the 3 affected cells. Two of 
these propensity calculations are then redundant, because one of the cells affected 
by the change to (𝑎𝑎1,𝑏𝑏, 𝑐𝑐), (𝑎𝑎1 + 1, 𝑏𝑏, 𝑐𝑐), is also (𝑎𝑎2,𝑏𝑏, 𝑐𝑐), and one of the cells 
affected by the change to (𝑎𝑎2, 𝑏𝑏, 𝑐𝑐), (𝑎𝑎2 − 1, 𝑏𝑏, 𝑐𝑐), is also (𝑎𝑎1, 𝑏𝑏, 𝑐𝑐). If there are 
multiple types of cell-centered events (e.g., diffusion to the left, diffusion 
downward), then the affected cells will be those with indices that are those of each 
changed cell plus the reverse of the offsets of all of these event types. If 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 types 
of cell-centered events contribute 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 unique offsets, then the number of 
propensity calculations for each changed cell will be 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜. However, if the 
optional offsets have been supplied, then the propensity calculations are performed 
according to a so-called “semimanual tracking” algorithm that avoids the redundant 
propensity calculations. For this example, the optional offsets would be (0,0,0) and 
(+1,0,0), corresponding to the relative positions of one of the changed cells and 
the cell to its right. At the beginning of the simulation, from these optional offsets, 
a new set of offsets is generated that indicates the relative positions of the cells 
either directly changed or affected by an event, which here would be (−1,0,0), 
(0,0,0), (+1,0,0), (+2,0, 0), (0,−1,0), and (+1,−1,0). Then, when the cell-
centered event is executed, a propensity calculation is performed for each cell 
whose indices are the sum of (𝑎𝑎1,𝑏𝑏, 𝑐𝑐) and one of the new set of offsets. 

 

Fig. 2 Diagram of cells in a simple cubic lattice affected by an event with offsets (−1,0,0), 
(+1,0,0), and (0,+1,0) (in addition to the always present zero offset) that changes the cells 
(a1,b,c) and (a2,b,c) 

Since the set of possible events and propensities is incrementally updated rather 
than generated anew at each time step, propensities are cached and so are not  
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allowed to be time-dependent. However, there is a way to, say, allow deposition to 
effectively occur over only a portion of a simulation run, which will be discussed 
later. 

In addition to possible events, so-called “periodic actions” are allowed to occur. 
Periodic actions may occur either every 𝑡𝑡 units of simulation time or at every 
𝑚𝑚 time steps. Like possible events, these actions are defined through functions or 
function objects. One example of a periodic action would be to dump a “snapshot” 
of the current state of the lattice to a file. A periodic action is also allowed to change 
the state of the lattice itself, and there may be cases were this is desirable. For 
example, in the kMC simulations of quantum dot growth by Meixner et al.,28 a 
strain field was updated every 2,500 time steps. If a periodic action changes the 
lattice, then 1 of 2 things may happen. If the simulation object is given the option 
to track the indices of the cells changed by a periodic action, then the set of possible 
events is incrementally updated. Since this option may lead to high-memory 
consumption if there are many changed cells, the simulation object may be given 
the option to merely check whether a periodic action has changed the lattice, and 
then the set of possible events is rebuilt from scratch if a change has taken place. 

Choosing a random event at a time step is done via what is called a “solver” in the 
“KMCThinFilm” library. (This follows similar usage in SPPARKS.25) There are 
currently two solvers to choose from: one implementing the binary tree algorithm 
by Blue et al.11 that scales as 𝑂𝑂(log2 𝑁𝑁) in the number of possible events 𝑁𝑁, and 
one that is a variant of an algorithm proposed by Schulze.12 In the original algorithm 
of Schulze, the number of unique nonzero propensity values, 𝑛𝑛𝑝𝑝, is fixed. An array 
of length 𝑛𝑛𝑝𝑝 is used to store lists of possible events, where the possible events in 
the list stored at element 𝑚𝑚 of the array all have propensity 𝑝𝑝𝑚𝑚. In the variant 
algorithm used in the library, an associative map is used in place of this array of 
lists. A key in this map is the propensity of an event and the value associated with 
this key is the list of possible events with that propensity. Key-value pairs can be 
added and removed from this map during the course of a simulation, so there is no 
need to fix the number of unique propensity values. To speed iteration over the 
map, an auxiliary array29 is used that contains pointers to the key-value pairs in the 
map, and iteration is done over this array rather than the map itself. The choosing 
of events in both the original algorithm and its variant scale should scale linearly 
with the number of unique propensity values in the system, which is often 
independent of 𝑁𝑁. 

A simulation itself is considered an object in the “KMCThinFilm” library. It owns 
a lattice object, which is initialized when the simulation object is initialized. The 
objects that define possible events and periodic actions (i.e., offsets and various 
function objects) are then attached to this simulation object. After this, the 
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simulation is actually run, that is, time stepping begins and events are executed. 
The objects that define a possible event or periodic action can also be detached from 
a simulation, and then a simulation can be restarted from where it left off. For 
example, if one wished to model a system where deposition and diffusion occur 
together for a period of time 𝑇𝑇dep, and then, after that period, deposition stops but 
diffusion continues, one could initialize the simulation, attach the objects defining 
deposition and diffusion, run the simulation for 𝑇𝑇dep units of simulation time, 
detach the function object defining deposition, and then restart the simulation and 
run it for an additional amount of time. 

An abstract interface is provided for random number generators, so client 
applications can provide their own random number generators and a wrapper class 
that implements this abstract interface. This may not be necessary since the library 
does provide a pseudorandom number generator of its own that implements this 
abstract interface. This generator uses the Mersenne Twister algorithm30 and is 
suitable for serial simulations. For parallel applications, the library also provides 
wrapper classes for two libraries that generate parallel streams of pseudorandom 
numbers, RngStreams31,32 and the Dynamic Creator of Mersenne Twister (DCMT) 
generators.33,34 Random number generators are not only for use by solvers. A 
random number generator in the “KMCThinFilm” library is an object in its own 
right, and it may also be used directly by, for example, function objects that define 
events. 

Parallel kMC simulations can be done using the “KMCThinFilm” library. The 
library uses an approximate algorithm similar to the one proposed by Shim and 
Amar35 and used in SPPARKS.25,36 In this algorithm, the lattice is split among the 
parallel processes according to 1 of 2 possible schemes. Figure 3 shows a diagram 
of an overhead view of a lattice (or of a lattice plane) split across 4 processes 
according to the “compact” decomposition scheme, which minimizes the length of 
the boundaries of each partition. In this scheme, there are ghost regions along the 
edge of each boundary, containing copies of the lattice cells of a neighboring 
processor. Events are not allowed to originate from cells in these regions, though 
of course the ghost regions may be affected by events originating from elsewhere. 
There is also row-based decomposition, where the lattice is split into strips, as 
shown in Fig 4. In this form of decomposition, if the global in-plane lattice indices 
are 𝑖𝑖 ∈ [0, 𝐿𝐿𝑖𝑖) and 𝑗𝑗 ∈ �0, 𝐿𝐿𝑗𝑗�, then the first row has indices 𝑖𝑖 ∈ �0, 𝐿𝐿𝑖𝑖 𝑁𝑁proc⁄ � and 
𝑗𝑗 ∈ �0, 𝐿𝐿𝑗𝑗�, the second has indices 𝑖𝑖 ∈ [𝐿𝐿𝑖𝑖 𝑁𝑁proc⁄ , 2 𝐿𝐿𝑖𝑖 𝑁𝑁proc⁄ ) and 𝑗𝑗 ∈ �0, 𝐿𝐿𝑗𝑗�, and 
so on, where 𝑁𝑁proc is the number of processing cores. 
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Fig. 3 Lattice partitioned across 4 processes according to the compact scheme. Each 
process is assigned a rank from 0 to 3. The ghost regions along the boundaries of each partition 
are copies of the lattice cells of a neighboring processor, and in the diagram, the processor 
from which they are copied is shown via their color. Periodic boundary conditions apply. 

 

Fig. 4 Lattice partitioned across 4 processes according to the row-based scheme. The ghost 
regions along the boundaries of each partition are copies of the lattice cells of a neighboring 
processor, and in the diagram, the processor from which they are copied is shown via their 
color. Periodic boundary conditions apply. 

Attempting to do kMC simulations on each partition of the lattice would lead to 
problems at the partition boundaries, since the events done on each partition could 
lead to conflicting effects on the ghost cells. To avoid this, an approximation is 
made where each partition is further subdivided into “sectors”, as illustrated in  
Fig. 5 for compact decomposition. In compact decomposition, each partition is 
subdivided into 4 quadrants, which become the sectors. In row-based 
decomposition, there would be 2 sectors per partition. In the figure, the active 
sectors happen to be the upper left quadrants of the lattice partitions. At any given 
time in the simulation, they could be the lower left, lower right, or upper right 
quadrants, so long as the relative locations of these active sectors are the same for 
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all processors, that is, “all” upper left, “all” lower left, and so on. An active sector 
is one where events are allowed to execute. While this imposes an unphysical 
restriction on where events can execute—hence why this algorithm is 
approximate—it also prevents parallel processes from executing conflicting events 
at the boundaries. Because the active sectors all have the same relative location, the 
regions that are affected by events happening within them do not overlap. 

 

Fig. 5 Sector boundaries for a lattice decomposed across 4 processes according to the 
compact scheme. Partition boundaries are indicated by thick solid lines, while the sector 
boundaries are indicated by thinner solid lines. Active sectors are shown in the color 
corresponding to the rank of the partition to which they belong. The dotted lines show the 
boundaries of the regions affected by events that occur within the active sectors. The parts of 
these regions that affect ghost cells are shown in the color corresponding to the ranks of the 
cells of which the ghost cells are copies. Here, the active sector happens to be the upper left of 
each partition, but at a given time, the active sector could be in the upper right, lower right, 
or lower left.  

With the sectors now defined, the approximate kMC algorithm can proceed on each 
processor according to the following algorithm. First, the global time 𝑡𝑡 on all 
processors is initialized to zero, while the variable 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is initialized to some 
nonzero value. Until 𝑡𝑡 exceeds the desired global simulation time 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, the sectors 
are iterated over in a loop. For each sector visited, the local time 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is initialized 
to zero. The number of lattice planes at each partition is adjusted so that it is the 
same for all partitions, unless the client application has explicitly disallowed this in 
order to avoid the parallel communication that would be needed for this step. The 
ghost cells are then updated, and the set of possible events is updated accordingly. 
A normal serial kMC algorithm is then run on the cells within the sector, with 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
incremented as each event is executed until 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  >  𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. However, the event that 
would cause 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 to exceed 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is not executed. If events have caused additional 
lattice planes to be added, then the number of lattice planes at each partition is again 
adjusted to ensure that it is the same for all partitions. The off-processor cells that 
correspond to the ghost cells, which may have changed due to the events that have 
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occurred, are then updated, and again, the set of possible events affected by changes 
to the ghost cells is updated. After the iteration, the global time 𝑡𝑡 is incremented by 
𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and the value of 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is updated if needed. The updates of the ghost cells that 
are performed when a sector is visited do not involve communicating the entirety 
of the ghost cell regions bordering a sector, only the communication of changes to 
each region. Currently, this communication is done via Message-Passing Interface 
(MPI).37 

The value of 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 may be determined by various time-stepping schemes. The 
simplest of these is to set 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 to a fixed value. The other schemes are various kinds 
of adaptive algorithms, which attempt to determine a reasonable value of 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 from 
the propensities of the possible events in the simulation. In all of these algorithms, 
the time step has the general form, 

𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 , (1)  

where 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is an adjustable parameter, and 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is a function that determines the 
particular adaptive time-step scheme. There are 2 choices currently available for 
𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 in the “KMCThinFilm” library: 

1) Maximum Single Propensity. This is the maximum propensity of all 
currently possible cell-centered events in the simulation. This is a simplified 
version of the adaptive method of determining 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 recommended by Shim 
and Amar.35 

2) Maximum Average Propensity. This is the maximum of the average 
propensities per possible cell-centered event from each sector. Here, 
𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = max �𝑝𝑝𝑠𝑠1,𝑝𝑝𝑠𝑠2, … ,𝑝𝑝𝑠𝑠

𝑁𝑁proc�, where for the case of compact 
decomposition, 𝑝𝑝𝑠𝑠𝑛𝑛  = max�𝑝𝑝𝑠𝑠,𝑈𝑈𝑈𝑈

𝑛𝑛 ,𝑝𝑝𝑠𝑠,𝐿𝐿𝐿𝐿
𝑛𝑛 ,𝑝𝑝𝑠𝑠,𝐿𝐿𝐿𝐿

𝑛𝑛 ,𝑝𝑝𝑠𝑠,𝑈𝑈𝑈𝑈
𝑛𝑛 � and 𝑝𝑝𝑠𝑠,𝑈𝑈𝑈𝑈

𝑛𝑛  is the 
average propensity of the events in the upper-left sector of partition 𝑛𝑛, that 
is, the sum of the propensities of all possible events in that sector divided 
by the number of those possible events, while similarly, 𝑝𝑝𝑠𝑠,𝐿𝐿𝐿𝐿

𝑛𝑛 , 𝑝𝑝𝑠𝑠,𝐿𝐿𝐿𝐿
𝑛𝑛 , 

and 𝑝𝑝𝑠𝑠,𝑈𝑈𝑈𝑈
𝑛𝑛  are the mean propensities in the lower left, lower right, and upper 

right sectors of partition 𝑛𝑛. This approach was recommended by S. Plimpton 
et al.36 

Over-lattice events are excluded from the adaptive time-step calculations. The 
propensity of an over-lattice event depends upon the in-plane dimensions of the 
lattice, while the propensities of cell-centered events do not. Because of this, mixing 
over-lattice and cell-centered events biases adaptive time-step calculations so that 
they tend to lead to unreasonably small time steps for larger lattices. If there are no 
possible cell-centered events at the beginning or restart of a simulation that can be 
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used to determine 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, then at each sector, an event is executed (e.g., deposition) 
that should cause one or more cell-centered events to be possible. The simulation 
time is then incremented by the time taken to execute the slowest event among all 
of the partitions. 

The proper value of 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is a trade-off between speed and accuracy, with larger 
values leading to fewer updates of ghost cells. Some kinds of simulations can 
tolerate higher values of 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. For example, in a parallel island coarsening 
simulation where time stepping was done according to the maximum propensity 
algorithm of Shim and Amar, 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 could be as high as 10.0 without significantly 
degrading accuracy.38 If 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is too large, a so-called “shish kebob” artifact may 
be seen, where islands, grains, or other simulated features tend to congregate near 
sector boundaries.36 

Running a parallel simulation changes how periodic actions are run. In a serial 
simulation, if a periodic action executes, it executes shortly after an event has been 
executed. In a parallel simulation, if a periodic action executes, it executes shortly 
after 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 has been incremented, that is, outside of the looping-over sectors. This 
allows periodic actions to use MPI calls for parallel communication, since a 
periodic action will execute the same number of times on every processor. 

3 Example Applications 

These examples of kMC models were chosen because they have features that 
generally cannot be specified via an input file that would be supplied to most of the 
available “off-the-shelf” kMC applications such as “CARLOS,”14,15 “CHIMP,”16,17 
“MONTY,”18,19 or Graph Theoretical kMC.20,21 Rather, they would tend to require 
at least some ad hoc coding for their implementation. One of these examples is a 
pair of relatively simple qualitative models of the formation of islands on a 
patterned substrate that tends to draw particles toward sites of a regular superlattice 
grid. The other is of a pseudo-polycrystal formed by ballistic deposition, where 
there is a single computational lattice and grains are identified via an integer label 
at a lattice cell rather than an actual grain orientation. These examples reproduce 
trends in the literature and show some of the possibilities offered by the 
“KMCThinFilm” library. 

3.1 Patterned Substrate 

The two qualitative models of patterned substrates presented here were developed 
by Kuronen et al.5 The lattice in these models is simple cubic, and it is assumed that 
there are no overhangs or internal vacancies. In both models, the propensity for 
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diffusion by hopping of a particle at lattice cell (𝑖𝑖, 𝑗𝑗, 𝑘𝑘) to a vacant cell with in-
plane indices (𝑖𝑖 ± 1, 𝑗𝑗) or (𝑖𝑖, 𝑗𝑗 ± 1) may be written as 

𝑝𝑝ℎ𝑜𝑜𝑜𝑜 = 𝑘𝑘𝐵𝐵𝑇𝑇
ℎ

exp �− 𝐸𝐸(𝑖𝑖,𝑗𝑗)
𝑘𝑘𝐵𝐵𝑇𝑇

� ,  (2)  

where 𝑘𝑘𝐵𝐵 is Boltzmann’s constant, ℎ is Planck’s constant, 𝑇𝑇 is the temperature, and 
𝐸𝐸(𝑖𝑖, 𝑗𝑗) is a model-dependent energy barrier whose value depends upon the in-plane 
cell indices 𝑖𝑖 and 𝑗𝑗. In what Kuronen et al.5 describe as “model A,” this barrier takes 
the form 

𝐸𝐸(𝑖𝑖, 𝑗𝑗) = 𝐸𝐸𝑠𝑠(𝑖𝑖, 𝑗𝑗) + 𝑛𝑛𝐸𝐸𝑛𝑛 ,  (3)  

where 𝑛𝑛 is the number of lateral nearest neighbors, 𝐸𝐸𝑛𝑛 (= 0.18 eV) is a parameter 
indicating the strength of the bond to a lateral nearest neighbor, and 𝐸𝐸𝑠𝑠(𝑖𝑖, 𝑗𝑗) is a 
periodically varying energy barrier. The pattern of periodicity is shown in Fig. 6. 
The unit cell, or domain, that forms this pattern has dimensions of 22 × 22 lattice 
cells, and it is tiled in a 16 × 16 arrangement. Within a domain, 𝐸𝐸𝑠𝑠 varies linearly 
from 0.65 eV at the edge of the domain to 0.85 eV at its center. 

 

Fig. 6 Variation of Es and Ed in patterned substrate models A and B from Kuronen et al.5 
Here i,j ∈ [0,352) and the size of an individual domain is 22 × 22. For Es, brighter colors 
constitute higher values, while for Ed, the reverse is true. 

In what Kuronen et al.5 describe as “model B,” the barrier takes a different form, 

𝐸𝐸(𝑖𝑖, 𝑗𝑗;𝐷𝐷) = 𝐸𝐸𝑠𝑠 + 𝑛𝑛𝐸𝐸𝑛𝑛 + 𝐻𝐻(𝑖𝑖, 𝑗𝑗;𝐷𝐷)𝐸𝐸𝑑𝑑(𝑖𝑖, 𝑗𝑗). (4)  

Here, 𝑛𝑛 and 𝐸𝐸𝑛𝑛 are as before. 𝐸𝐸𝑠𝑠 is now a constant value of 0.75 eV. 𝐸𝐸𝑑𝑑(𝑖𝑖, 𝑗𝑗) has 
the pattern of variation shown in Fig. 6, but varies linearly from 0.02 eV at the edge 
of a domain to zero at its center. The variable 𝐷𝐷 indicates the direction of a particle 
hop. If a particle moves toward the edge of a domain and is within half the lateral 
size of a domain from that edge, then 𝐻𝐻(𝑖𝑖, 𝑗𝑗;𝐷𝐷) = 1; otherwise, it is zero. 
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In a later paper39 by Kuronen et al.,40 a particle initially randomly deposited at a 
lattice cell with in-plane lattice indices (𝑖𝑖, 𝑗𝑗) will seek out cells with in-plane indices 
(𝑖𝑖 ± 1, 𝑗𝑗), (𝑖𝑖, 𝑗𝑗 ± 1), and (𝑖𝑖 ± 1, 𝑗𝑗 ± 1) that the most lateral nearest neighbors. If 
such a cell is found, the particle will then move to it. This model of deposition will 
be used here. The flux for deposition is taken to be 𝐹𝐹 = 0.0033 ML s⁄ , and 
deposition continues until a coverage of 15% has been reached. 

Conceptually the lattice is a 3-dimensional cubic lattice, but since there are no 
vacancies or overhangs, the simulation can be done with the “KMCThinFilm” 
library using a 2-dimensional computational lattice, that is, a lattice with a single 
plane, for computation. The array of integers 𝐼𝐼𝑖𝑖𝑖𝑖0 in computational lattice cell 
(𝑖𝑖, 𝑗𝑗, 0) is set to a size of one and is used to store the height of the column of particles 
at cell (𝑖𝑖, 𝑗𝑗, 0) of the “true” 3-dimensional lattice being modeled. The following 
function objects are needed for simulation with the “KMCThinFilm” library: 

• A function object to execute a deposition event. When a deposited particle 
seeks out nearby cells with the most nearest neighbors, there may be more 
than 1 cell with the most nearest neighbors, so a random number will be 
used to break any ties. Accordingly, this function object contains a pointer 
to the random number generator used in the simulation. 

• Four function objects to execute a hop in each of the 4 possible directions. 
These objects can easily be instantiations of a common function object class 
whose constructor takes an argument that determines the hopping direction, 
and that is what has been done here. 

• A function object for determining the propensities for hopping in each of 
the 4 directions. For model A, this function object contains a pointer to a 
22 × 22 array containing the values of 𝐸𝐸𝑠𝑠(𝑖𝑖, 𝑗𝑗) in a domain. For model B, 
the object contains a pointer to an array with the same dimensions but 
containing the values of 𝐸𝐸𝑑𝑑(𝑖𝑖, 𝑗𝑗) in a domain. 

The same 5 offsets are needed for the calculation of each hopping propensity: 
(0,0,0), (0, +1,0), (0,−1,0), (+1,0,0), and (−1,0,0). To obtain a coverage of 
Θc = 15%, the simulation ran for Θc 𝐹𝐹⁄  units of simulation time. Afterwards, the 
deposition event was removed from the simulation, which then ran for an additional 
0.1Θc 𝐹𝐹⁄  units of simulation time. A function object implementing a periodic 
action was used to print a snapshot of the lattice to a file every 0.05Θc 𝐹𝐹⁄  units of 
simulation time. The Mersenne Twister algorithm with a period of 219937 − 130 was 
used to generate pseudorandom numbers. 

In the later paper by Kuronen et al.,40 it was shown that similar trends were seen for 
both models A and B. At relatively low temperatures, small groups of islands or 
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islands with very irregular boundaries tended to form near the centers of the 
domains. As the temperature rises, the islands tend to become more compact and 
arrange themselves more clearly into a square array, and with further increase in 
temperature, the islands tend to grow larger and vacancies in the array of islands 
appear more frequently. This can be seen in Figs. 7 and 8, which show some results 
of simulations of these models using a client application of the “KMCThinFilm” 
library. Average wall clock times where taken on these simulations on a 2.3-GHz 
Intel Xeon E5-2698 v3 node of a computational cluster and the average time per 
event (i.e., the wall clock time divided by the total number of events executed in a 
simulation) are shown in Tables 1 and 2. (While the simulations are serial, using a 
cluster allows several simulations to be performed simultaneously.) For each model 
type, temperature, and solver, the averages of the wall clock times and event counts 
were taken over 100 simulation runs. The average time per event ranges from about 
2 to 4 µs. This time per event tends to be largest for the smallest temperatures, likely 
because as the temperature decreases, the number of hopping events decreases 
while the number of deposition events—which happen to be more expensive to 
execute than hopping in these particular models—remains approximately the same. 
As expected, both the wall clock time and the time per event tend to be smaller 
when semimanual tracking is used, though given the short running times of these 
simulations, its benefits are marginal here.  
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a) b) c) 

   
d) e) f) 

Fig. 7 Arrangement of islands at the end of the simulation of model A for temperatures a) 
T = 340 K, b) T = 390 K, and c) T = 440 K, using the solver based on the Schulze12 algorithm, 
and for temperatures d) T = 340 K, e) T = 390 K, and f) T = 440 K, using the binary tree 
algorithm. The grey level at a point indicates the height of the column of particles there. 
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a) b) c) 

   
d) e) f) 

Fig. 8 Arrangement of islands at the end of the simulation of model B for temperatures a) 
T = 340 K, b) T = 390 K, and c) T = 440 K, using the solver based on the Schulze12 algorithm, 
and for temperatures d) T = 340 K, e) T = 390 K, and f) T = 440 K, using the binary tree 
algorithm. The grey level at a point indicates the height of the column of particles there. 

Table 1 Average wall clock times and average times per event for simulations of model A on 
an Intel Xeon 2.3-GHz node of a computational cluster 

Solver Temperature  
(K) 

Auto-tracking Semimanual tracking 
Avg. wall 

time 
(s) 

Avg. time per  
event  
(µs) 

Avg. wall 
time  
(s) 

Avg. time per 
event  
(µs) 

Schulze 
algorithm 

340 5.8 2.7 5.5 2.6 
390 14.5 1.9 13.7 1.8 
440 133.1 1.6 122.2 1.5 

Binary 
tree 

340 7.8 3.7 7.5 3.5 
390 20.4 2.6 19.1 2.5 
440 195.8 2.4 183.5 2.2 
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Table 2 Average wall clock times and average times per event for simulations of model B an 
Intel Xeon 2.3-GHz node of a computational cluster. 

Solver Temperature 
(K) 

Auto-tracking Semimanual tracking 
Avg. wall  

time 
(s) 

Avg. time 
per event 

(µs) 

Avg. wall 
time  
(s) 

Avg. time per  
event  
(µs) 

Schulze 
algorithm 

340 4.2 4.8 4.0 4.7 
390 11.3 2.2 10.8 2.1 
440 170.9 1.6 159.2 1.5 

Binary 
tree 

340 4.9 5.7 4.9 5.7 
390 15.2 2.9 14.9 2.9 
440 261.5 2.5 251.3 2.4 

 

3.2 Pseudo-polycrystal Formed by Ballistic Deposition 

Here, the lattice is face-centered cubic (fcc) with the surface normal along the 
(111)-direction, and a cell with indices (𝑖𝑖, 𝑗𝑗,𝑘𝑘), 𝑖𝑖, 𝑗𝑗 ∈ [0,100), is presumed to 
contain a particle with a physical location of 𝐚𝐚𝑖𝑖𝑖𝑖 + 𝐚𝐚𝑗𝑗𝑗𝑗 + 𝐚𝐚𝑘𝑘𝑘𝑘, where primitive 
lattice vectors 𝐚𝐚𝑖𝑖, 𝐚𝐚𝑗𝑗, and 𝐚𝐚𝑘𝑘, are oriented as follows in respect to the unit vectors  
𝐱𝐱�, 𝐲𝐲�, and 𝐳𝐳� pointing along the Cartesian 𝑥𝑥-, 𝑦𝑦-, and 𝑧𝑧-axes. 

𝐚𝐚𝑖𝑖 =
𝑎𝑎

2√2
�√3𝐱𝐱� + 𝐲𝐲�� 

𝐚𝐚𝑗𝑗 =
𝑎𝑎
√2

𝐲𝐲� 

𝐚𝐚𝑘𝑘 = 𝑎𝑎 �
1
4
�2

3
𝐱𝐱� +

√2
4
𝐲𝐲� +

1
√3

𝐳𝐳��. 

(5)  

The lattice constant is 𝑎𝑎, and 𝐱𝐱� and 𝐲𝐲� are parallel to the lattice planes. Since no 
particular material is being modeled here, 𝑎𝑎 is simply taken to be equal to 1. 

The pseudo-polycrystal model presented here is similar to that in work by Wang 
and Clancy,6 though while that work employed both ballistic deposition and 
deposition where a particle can bounce off of surfaces to which it did not stick, here 
deposition is always ballistic. A depositing particle appears above the lattice, travels 
with an incidence angle 𝜃𝜃 in respect to the surface normal (and an azimuth that here 
is set to zero), sticks to the first available cell within a distance 𝑎𝑎 √2⁄  from the line 
of incidence, and if this cell does not have at least 3 nearest neighboring particles, 
the depositing particle migrates to a nearby vacant cell that does. Conceptually, a 
lattice cell (𝑖𝑖, 𝑗𝑗,𝑘𝑘) with 𝑘𝑘 < 0 is considered part of the substrate, so any cell in the 
first plane of the computational lattice (i.e., 𝑘𝑘 = 0) is in contact with the substrate 
and thus treated as having 3 nearest neighboring particles. Afterwards, the 
deposited particle acquires an integer label that identifies it as belonging to a grain. 
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If possible, this integer grain label is randomly chosen to be one of the grain labels 
of its nearest neighbors. Otherwise, it is set to an integer value that has not yet been 
used. A particle may diffuse by hopping to a vacant nearest-neighboring cell 
provided, 1) that both the particle and the vacant cell have at least 3 other particles 
as nearest neighbors, and 2) that all of the nearest neighboring particles of the 
vacant site have the same grain label as the particle attempting to diffuse. If these 
conditions are satisfied, then the propensity for hopping of a particle is taken to be 

𝑝𝑝ℎ𝑜𝑜𝑜𝑜 = 𝜈𝜈0 exp �−
𝐸𝐸𝑑𝑑 + 𝐸𝐸𝑛𝑛(𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝛼𝛼𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

𝑘𝑘𝐵𝐵𝑇𝑇
� , (6)  

where 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the number of nearest neighbors of the particle, 𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is the 
number of nearest neighbors of the vacant cell, 𝐸𝐸𝑑𝑑 is the base diffusion barrier to 
hopping, 𝐸𝐸𝑛𝑛 and 𝛼𝛼 are parameters affecting the influence of neighbors on the 
hopping of a particle, 𝑘𝑘𝐵𝐵 is Boltzmann’s constant, and 𝑇𝑇 is the temperature. 
Following Voter,1 the attempt frequency 𝜈𝜈0 is set to 1013 Hz. The chosen values 
for 𝐸𝐸𝑑𝑑, 𝐸𝐸𝑛𝑛, and 𝛼𝛼 have been set mostly arbitrarily to 1.0 eV, 0.25 eV, and 0.3, 
respectively. The temperature was set to 700 K. The simulation continues until a 
coverage Θc = 20 monolayers (ML) has been approximately reached, that is, it 
continues until the simulation time reaches Θc 𝐹𝐹⁄ , where 𝐹𝐹 is the deposition flux. 
Simulations were done for 𝐹𝐹 = 0.1 ML s⁄  and 𝐹𝐹 = 10 ML s⁄ . 

The array of integers 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 in computational lattice cell (𝑖𝑖, 𝑗𝑗,𝑘𝑘) is set to a size of one 
and is used to store the grain label, and a grain label value of zero indicates that the 
cell is unoccupied. The Mersenne Twister algorithm30 with a period of 219937 − 1 
was used to generate pseudorandom numbers, and the binary tree solver was used 
to randomly select events. The following function objects were used for simulation 
with the “KMCThinFilm” library: 

• A function object for calculating the hopping propensity. This function 
object is associated with a total of 157 offsets: offset (0,0,0), which is 
always present; the offsets indicating the locations of nearest neighboring 
cells of the particle that may hop; and the offsets indicating the locations of 
the twelve nearest neighboring cells of each of the 12 sites to which the 
particle may hop. Of these 157 offsets, only 55 are unique, but this only 
affects memory consumption, not execution time. 

• Twelve function objects for executing a hopping event. Again, these were 
all instances of the same class. 

• A function object executing deposition. This object contains all of the logic 
used for ballistic deposition. This logic, by design, is not part of the 
“KMCThinFilm” library itself. 
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• A function object implementing a periodic action to print a snapshot of the 
lattice to a file. A snapshot was printed every 0.05Θc 𝐹𝐹⁄  units of simulation 
time. 

Qualitative relationships between the angle of incidence for deposition and growth 
morphology can be seen in Figs. 9–11, which show slices of the deposited thin film 
for a deposition flux of 0.1 ML s⁄  and angles of incidence varying from 0° to 85°. 
As the angle of incidence increases, the growth angles of the grains in respect to 
the surface normal increase as well. Also, there is a transition from columnar 
growth, where the grains are in contact with one another, to dendritic growth, where 
grains grow in needle-like structures. Both of these trends are physically reasonable 
and consistent with previous kMC simulations.6,41 

The relationship between the growth angle of grains and the angle of incidence for 
deposition in the current simulations is also apparent from the histograms and other 
data shown in Figs 12 and 13. The histograms show the distribution of the growth 
angle and “reversed” azimuth (that is, angle in respect to the negative 𝑥𝑥-axis) of the 
grains grown with a deposition flux of 10 ML/s. The growth angle and azimuth for 
a grain are taken to be the angles with respect to the 𝑧𝑧-axis and negative 𝑥𝑥-axis of 
the line that minimizes the sum of the squares of the distances42 between itself and 
the particles in that grain. For a given angle of incidence, such lines were 
determined for grains from 10 different simulations, but least-squares lines were 
not determined for grains with less than 50 particles. For 𝜃𝜃 = 0°, the grains tend to 
grow at a slight tilt from the surface normal rather than straight up, but there is no 
particular vertical plane with which the grains tend to align. As the angle of 
incidence increases, the growth angle tends to increase, and the grains also tend to 
be increasingly aligned with the planes that contain the deposition trajectories, that 
is, those parallel to the 𝑥𝑥𝑥𝑥-plane. Once the grains are more consistently aligned 
parallel to the 𝑥𝑥𝑥𝑥-plane (i.e., when their growth angles are about 45° or more), their 
growth angles can be meaningfully compared with the 2-dimensional theory of  
Tait et al.43 on the relationship between growth angle 𝛽𝛽 of columnar grains and the 
incidence angle of deposition, which is as follows. 

𝛽𝛽 = 𝜃𝜃 − sin−1 �
1 − cos 𝜃𝜃

2
�. (7)  

The data in Fig. 13 show that the growth angles in the simulated grains are less than 
those predicted by Tait et al.43 This is consistent with results for ballistic deposition 
in the work of Wang and Clancy.6 
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a) 

 
b) 

 
c) 

 
d) 

Fig. 9 Slice of simulated thin film for flux F = 0.1 ML/s and angles of incidence from a) θ = 
0°, b) θ = 15°, c) θ = 30°, and d) θ = 45°. Here, the x-axis (not shown) points to the right, and 
the y-axis (also not shown) points out of the page. 
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a) 

 
b) 

Fig. 10 Slice of simulated thin film for flux F = 0.1 ML/s and angles of incidence from  
a) θ = 60° and b) θ = 75°. Here, the x-axis (not shown) points to the right, and the y-axis (also 
not shown) points out of the page. 

 

Fig. 11 Slice of simulated thin film for flux F = 0.1 ML/s and angle of incidence θ = 85°. 
Here, the x-axis (not shown) points to the right, and the y-axis (also not shown) points out of 
the page. 
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a) 

  

Incidence angle 
0° 
Growth angle 
Mean: 12.8° 
Std. dev.: 9.8° 
Azimuth 
Mean: –2.85° 
Std. dev.: 104.4° 
 

b) 

  

Incidence angle 
15° 
Growth angle 
Mean: 13.4° 
Std. dev.: 10.0° 
Azimuth 
Mean: –1.35° 
Std. dev.: 82.5° 
 

c) 

  

Incidence angle 
30° 
Growth angle 
Mean: 14.7° 
Std. dev.: 10.4° 
Azimuth 
Mean: –1.50° 
Std. dev.: 74.7° 
 

Fig. 12 Histograms of the growth angle and azimuth (with respect to the negative x-axis) of 
grains of films grown with a deposition flux of 10 ML/s and angles of incidence varying from 
0° to 30°. 
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a) 

  

Incidence angle 
45° 
Growth angle 
Mean: 23.4° 
Std. dev.: 9.07° 
Azimuth 
Mean: –0.10° 
Std. dev.: 41.2° 
Tait growth angle 
36.6° 

b) 

  

Incidence angle 
60° 
Growth angle 
Mean: 28.9° 
Std. dev.: 8.34° 
Azimuth 
Mean: –0.34° 
Std. dev.: 29.3° 
Tait growth angle 
45.5° 

c) 

  

Incidence angle 
75° 
Growth angle 
Mean: 36.0° 
Std. dev.: 7.73° 
Azimuth 
Mean: 0.060° 
Std. dev.: 19.9° 
Tait growth angle 
53.2° 

d) 

  

Incidence angle 
85° 
Growth angle 
Mean: 44.1° 
Std. dev.: 9.69° 
Azimuth 
Mean: 0.058° 
Std. dev.: 12.7° 
Tait growth angle 
57.8° 

Fig. 13 Histograms of the growth angle and azimuth (in respect to the negative x-axis) of 
grains of films grown with a deposition flux of 10 ML/s and angles of incidence varying from 
45° to 85°. The mean and standard deviations of the growth angle and azimuth, as well as the 
growth angle predicted from the theory of Tait et al.43 are also shown. 
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In the current simulations, the angle of incidence also affects the density of the film. 
Here, the relative density is taken to be the number of particles in the deposited film 
divided by the number of particles that would be in a fully occupied lattice that is 
the same height as the film. (This implies that internal vacancies in the film are 
treated as closed pores, while valleys in the surface of the film are treated as open 
pores.) Figure 14 shows the relationship between the angle of incidence and relative 
density for 2 different deposition fluxes, 0.1 and 10 ML/s. For a given angle of 
incidence, the relative density is averaged from the results of 10 different 
simulations. Again, the qualitative trends are similar to those seen in previous 
simulations;6,41,43 initially the density is largely independent of the angle of 
incidence, but after growth transitions from columnar to dendritic, the increasing 
gaps between the grains contribute to a steady decrease in the density of the film. 
The film grown at a deposition flux of 0.1 ML/s is denser than one grown at  
10 ML/s because the simulation continues until a certain amount of coverage has 
been reached, so a smaller deposition flux corresponds to a larger simulation time 
and more opportunities for diffusing particles to fill in vacancies. 

 

Fig. 14 Relative density of a simulated film deposited by ballistic deposition versus the angle 
of incidence. A film with a relative density of 1.0 has no vacancies. Error bars represent a 
99.7% confidence interval. 

The average wall clock times taken by these simulations on a 2.3-GHz Intel Xeon 
E5-2698 v3 node of a computational cluster and the average times per event, that 
is, the wall clock time divided by the total number of events executed in a 
simulation, are shown in Tables 3 and 4. (While the simulations are serial, using a 
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cluster allows several simulations to be performed simultaneously.) The averages 
of the wall clock times and event counts were taken over 10 simulation runs. For 
the simulations with the high-deposition flux, the wall clock times range from about 
1 to 2 min. The simulations with the lower deposition flux generally have executed 
roughly a hundred times as many events, and the wall clock times are accordingly 
larger, ranging from about 0.8 to 2.6 h. The time per event for these simulations is 
about an order of magnitude longer than that of the simulations in Section 3.1, and 
there are at least 2 issues that cause these simulations to take significantly longer. 
First, the possible events in each simulation contribute a total of 55 unique offsets, 
as opposed to 5 for the patterned substrate: the offset (0,0,0) and the offsets 
associated with the nearest neighbors. Second, the number of types of cell-centered 
events for the pseudo-polycrystal, 12, is 3 times larger than it is for the patterned 
substrate. These 2 considerations alone mean that when an event is executed in the 
pseudo-polycrystal simulation and auto-tracking is used, there are 660  
(i.e., 55 × 12) propensities calculated for each cell changed by an event, while only 
20 (i.e., 5 × 4) propensity calculations are done for each cell changed by an event 
in the patterned substrate simulation. Use of semimanual tracking does cut down 
on the simulation times by about a factor of 1.3 to 1.4. 

Table 3 Wall clock time and average times per event spent in simulations with deposition 
flux F = 10 ML⁄s. 

Angle of 
incidence  

(°) 

Auto-tracking Semimanual tracking 
Average wall 
time spent in 
simulation  

(s) 

Average wall 
time per 

event  
(µs) 

Average wall 
time spent in 
simulation  

(s) 

Average wall 
time per 

event  
(µs) 

0 80.9 71.8 62.2 55.5 
15 79.2 71.4 60.9 54.8 
30 73.5 71.9 59.2 58.2 
45 93.2 75.3 72.6 58.9 
60 103.6 73.8 80.1 56.1 
75 120.9 77.4 95.5 60.9 
85 125.1 76.9 96.5 59.5 
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Table 4 Wall clock time and average times per event spent in simulations with deposition 
flux F = 0.1 ML⁄s. 

Angle of 
incidence  

(°) 

Auto-tracking Semimanual tracking 
Average wall 
time spent in 
simulation  

(s) 

Average wall 
time per  

event  
(µs) 

Average wall 
time spent in 
simulation  

(s) 

Average wall 
time per 

event  
(µs) 

0 9,233.8 78.3 6,413.6 53.8 
15 8,579.7 72.3 6,545.3 55.9 
30 8,964.2 78.8 6,402.1 56.7 
45 8,837.8 72.7 6,714.2 55.8 
60 8,595.7 75.1 6,276.5 55.0 
75 5,871.0 72.9 4,410.2 52.3 
85 3,980.0 65.9 2,759.8 45.4 

4. Parallel Scalability 

Kratzer44 has claimed that “. . . the scalability of parallel kMC simulations for 
typical tasks is practically limited to four or eight parallel processors with the 
currently available parallel algorithms,” and the results here suggest that this may 
be at least partially true. Parallel scalability does tend to decay rapidly as the 
number of processing cores increases. On the other hand, this tendency decreases 
as the size of the lattice used in the simulations increases. 

Tests of parallel scalability have been done for a client application of the 
“KMCThinFilm” library that implements a solid-on-solid island coarsening model 
from Shi, Shim, and Amar.38 In this model, the lattice is simple cubic, and a particle 
in a cell of this lattice can diffuse with propensity 

𝐷𝐷𝑚𝑚 = 𝜈𝜈0 exp �−
𝐸𝐸0 + 𝑛𝑛𝐸𝐸𝑏𝑏
𝑘𝑘𝐵𝐵𝑇𝑇

�, (8)  

where attempt frequency 𝜈𝜈0 = 1012 s−1, 𝐸𝐸0 = 0.4 eV, 𝑛𝑛 is the number of nearest 
in-plane neighbors, 𝐸𝐸𝑏𝑏 = 0.1 eV, 𝑘𝑘𝐵𝐵 is the Boltzmann constant, and temperature 
𝑇𝑇 = 250 K. If a particle diffuses to a cell that is above one or more empty cells, it 
falls until it lands atop an occupied cell. The “falling” here is only a conceptual part 
of the model; computationally, the particles in the cubic lattice are represented 
using a  
2-dimensional computational lattice where, as in the solid-on-solid model of the 
patterned substrate in Section 3.1, the array of integers 𝐼𝐼𝑖𝑖𝑖𝑖0 in computational lattice 
cell (𝑖𝑖, 𝑗𝑗, 0) is set to a size of 1 and used to store the height of the column of particles 
at cell (𝑖𝑖, 𝑗𝑗, 0) of the “true” lattice being modeled. The deposition flux 𝐹𝐹 was set to 
1 ML/s, and deposition continued until coverage of about 10% was reached. Every 
50 s of simulation time, each MPI process printed a snapshot of the part of the 
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lattice that it owned. The total simulation time was 103 s. Parallel streams of 
random numbers are provided via the RngStreams library.31 

For strong scalability, parallel speed-up is defined as 

𝑆𝑆�𝑁𝑁proc� =
𝑡𝑡1

𝑡𝑡𝑁𝑁proc
, (9)  

where 𝑡𝑡𝑚𝑚 is the wall clock time taken to complete a simulation over a domain 
distributed over 𝑚𝑚 processing cores. For consistency, the approximate sectoring 
algorithm is used to determine 𝑡𝑡1. In the ideal case, 𝑆𝑆�𝑁𝑁proc� would of course equal 
𝑁𝑁proc, and at the very least, it should be greater than 1. A related measure, parallel 
efficiency, is defined as 

𝑃𝑃𝑃𝑃�𝑁𝑁proc� =
𝑆𝑆�𝑁𝑁proc�
𝑁𝑁proc 

. (10)   

Obviously the ideal value of 𝑃𝑃𝑃𝑃�𝑁𝑁proc� is 1, and if 𝑃𝑃𝑃𝑃�𝑁𝑁proc� is less than 1 𝑁𝑁proc⁄ , 
it means that the simulation performed on 𝑁𝑁proc cores performs worse than a 
simulation on a single processor. 

Figures 15 and 16 show parallel efficiencies and wall clock times for the client 
application of the “KMCThinFilm” library implementing the coarsening model 
running on a Cray XC40 cluster of 2.3-GHz Intel Xeon E5-2698 v3 nodes, where 
each node effectively has 32 cores. Here, the model is applied over domains with 
in-plane lattice dimensions of 256 × 256, 512 × 512, 1,024 × 1,024, and 
1,600 × 1,600. The parallel time-stepping scheme here uses a fixed time step set 
to 𝐷𝐷0−1. Both row-based and compact decomposition are used with the binary tree 
and Schulze solvers. In Fig. 15, the parallel efficiencies from the work of Shi, Shim, 
and Amar38 are also shown for comparison, although this comparison should be 
taken with caution since their work was done on an entirely different cluster. From 
Figs. 15 and 16, certain trends are evident. One trend is that the use of the solver 
based on the Schulze algorithm leads to slightly smaller parallel efficiencies. This 
appears, though, to be an artifact of this solver simply taking far less computational 
time than the binary tree solver for the same problem, while not affecting the MPI 
communication time. A second trend is that while parallel efficiencies steadily 
decrease with the number of processing cores, the rate of this decrease is lower for 
larger domain sizes. For the 1,600 × 1,600 domain, parallel efficiencies are even 
sometimes marginally greater than 1. Such behavior has been seen before in the 
work of Shi, Shim, and Amar, and it may be due to memory cache effects.38 A third 
trend is that for 𝑁𝑁proc > 1, compact decomposition consistently leads to both lower 
parallel efficiencies and higher wall clock times than row-based decomposition, 
though as the size of the domain increases, the relative difference in wall clock 



 

29 

times for the 2 modes of decomposition decreases. For the 256 × 256 domain, this 
trend is so strong that when compact decomposition is used, parallel efficiencies 
are at or below 1 𝑁𝑁proc⁄ , which again means that the simulations performed on 
multiple processing cores performed at the same speed or worse than a simulation 
on a single processor. Accordingly, for this domain, the wall clock times for 
𝑁𝑁proc > 1 are also generally greater than that for a single processing core, showing 
just how poorly compact decomposition performs over such a small domain. The 
relatively poor performance of compact decomposition versus row-based 
decomposition may seem surprising at first, given that compact decomposition 
should usually entail a lower volume of data being communicated between MPI 
processes. However, compact decomposition requires twice as many sectors as 
row-based decomposition, and each visit of a sector requires the communication of 
ghosts. The volume of data communicated in row-based decomposition may indeed 
be higher than that in compact decomposition. However, since only changes to 
ghost regions are communicated, this volume is not that high to begin with, so the 
communication overhead is dominated more by the very acts of sending and 
receiving messages, rather the costs associated with the volume of data itself. Shim 
and Amar35 have also observed row-based communication having a lower 
overhead.  
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a) b) 

  
c) d) 

Fig. 15 Parallel efficiency versus the number of processing cores for the implementation of 
an island coarsening model using the “KMCThinFilm” library on a Cray XC40 cluster. The 
model is applied over domains with in-plane dimensions of a) 256 × 256, b) 512 × 512, c) 1,024 
× 1,024, and d) 1,600 × 1,600. The parallel time-stepping scheme here uses a fixed time step set 
to 1/D0. Both row-based and compact decomposition are used with the binary tree and Schulze 
solvers. For models with in-plane dimensions from 512 × 512 to 1,600 × 1,600, parallel 
efficiencies from the island coarsening implementation of Shi, Shim, and Amar38 (running on 
a different cluster) are also shown. 



 

31 

  
a) b) 

  
c) d) 

Fig. 16 Wall clock time versus the number of processing cores for the implementation of an 
island coarsening model using the “KMCThinFilm” library on a Cray XC40 cluster. The 
model is applied over domains in-plane dimensions of a) 256 × 256, b) 512 × 512, c) 1,024 × 
1,024, and d) 1,600 × 1,600. The parallel time-stepping scheme here uses a fixed time step set 
to 1/D0. Both row-based and compact decomposition are used with the binary tree and Schulze 
solvers. 

At this point, the time step for the parallel algorithm has been set to a fixed value. 
Here, possible consequences of using an adaptive time-step scheme on parallel 
efficiency are shown. For the client application of the “KMCThinFilm” library 
implementing the island coarsening model for the different parallel time-step 
schemes described in Section 2, Figs. 17 and 18 show the parallel efficiency, wall 
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clock times, average value of adaptive parallel time step 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and the number of 
parallel time steps (i.e., the loops over sectors). For the fixed time-step scheme, the 
step size is again 𝐷𝐷0−1. The Schulze solver and row-based parallel decomposition 
are used. For all the adaptive schemes, the island coarsening model presents some 
problems. As expected, the maximum single propensity scheme generally leads to 
the same time step as the fixed time-step scheme with a time step of 𝐷𝐷0−1, but at a 
greater cost, both due to the computation needed to find the local maximum 
propensity values and to the cost of communication needed to find the global 
maximum propensity among all the MPI processes. For the 512 × 512 domain, the 
wall clock time at 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 64 is higher than that at 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 32, and for the 
256 × 256 domain, there is no benefit in using more than 8 processing cores. The 
maximum average propensity scheme with 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1 has improved parallel 
efficiency, but for this particular model that introduces so-called “shish kebab” 
artifacts as shown in Fig. 19, where in a coarsening simulation on a 512 × 512 
domain distributed over 8 processing cores, particles with no neighbors or only 1 
neighbor line up near sector boundaries. This issue can be ameliorated by 
decreasing 𝑛𝑛𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜 to 0.1. When the maximum average propensity scheme is used 
with this particular coarsening model, the parallel time step decreases as the number 
of processing cores increases. For the 256 × 256 domain, this effect is so acute that 
it ruins the parallel scalability for 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 > 4 when 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 < 1, and the number of 
parallel steps (i.e., the number of loops over sectors) can be more than that from the 
conservative maximum single propensity scheme. This happens because even after 
islands form, there are still a few particles with no lateral nearest neighbors, and 
because of the exponential function in the propensity of diffusion, these few 
particles have a propensity to diffuse that is several orders of magnitude higher than 
those of other particles. When the partitions are few and large, these few high-
magnitude propensities are averaged among a large number of propensities, so that 
the average propensity of each sector is not dominated by them, and thus the parallel 
time step is not too small (relative to 𝐷𝐷0−1). As the number of partitions increases 
and their size decreases, eventually the average propensities in each sector become 
dominated by the high-magnitude propensities of those particles, causing the 
parallel time step to plummet. This issue is not present in systems where the 
available propensities do not vary by orders of magnitude, such as the Potts model 
of grain growth that was used to first demonstrate this type of adaptive scheme.25,36 
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a) b) 

  
c) d) 

Fig. 17 Effects of the choice of adaptive time-step scheme on the parallel scalability of the 
implementation of an island coarsening model on a 512 × 512 domain, using the 
“KMCThinFilm” library on a Cray XC40 cluster. These figures show a) strong parallel 
scalability, b) wall clock time, c) average value of the adaptive time step, and d) the number 
of parallel time steps (i.e., the loops over sectors). “Max. Avg. Prop”, “Max. Sing. Prop.” and 
“Fixed” represent different parallel time-stepping schemes. These were determined using the 
solver based on the Schulze algorithm with row-based decomposition. 
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a) b) 

  
c) d) 

Fig. 18 Effects of the choice of adaptive time-step scheme on the parallel scalability of the 
implementation of an island coarsening model on a 256 × 256 domain, using the 
“KMCThinFilm” library on a Cray XC40 cluster. These figures show a) strong parallel 
scalability, b) wall clock time, c) average value of the adaptive time step, and d) the number 
of parallel time steps (i.e., the loops over sectors). “Max. Avg. Prop”, “Max. Sing. Prop.” and 
“Fixed” represent different parallel time-stepping schemes. These were determined using the 
solver based on the Schulze algorithm with row-based decomposition. 
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Fig. 19 Close-up of the results of an island coarsening simulation after 103 s of simulation 
time, on a 512 × 512 domain distributed over 8 processing cores, using the maximum average 
propensity adaptive parallel time-stepping scheme with nstop = 1, the Schulze solver, and row-
based parallel decomposition. These results show a “shish kebab” effect, where features of the 
simulation (in this case, particles with no neighbors or only 1 neighbor) are artificially 
attracted to sector boundaries due to approximations in the parallel kMC method.36 

5. Conclusions 

A new library for the development of lattice-based kMC simulation codes, 
“KMCThinFilm”, has been introduced. This library implements algorithms for 
choosing sequences of random events in a kMC simulation, allowing researchers 
to focus on writing the code needed to determine the propensities for these events 
and the means of executing them. Example applications, 1 of a patterned substrate 
and 1 of ballistic deposition of a pseudo-polycrystalline film, have demonstrated its 
flexibility. The “KMCThinFilm” library is capable of approximate parallel kMC 
simulations, and its scalability appears to be on par with a previous parallel 
implementation. However, scalability still tends to decline fairly rapidly as more 
processing cores are used in a simulation, and this tendency is more pronounced for 
simulations that use smaller lattices. Furthermore, care needs to be taken in the 
determination of the time step used to determine the frequency of parallel 
synchronization used in a simulation. Even schemes that aim to determine this time 
step adaptively may lead to steps so large that they lead to artifacts or—depending 
on the system being modeled—so small that employing parallelism provides either 
a marginal performance benefit or no benefit over a purely serial simulation. 
Parallel simulations employing the “KMCThinFilm” library, then, may be best 
reserved for simulations that are too computationally expensive to run on a 
workstation. 
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List of Symbols, Abbreviations, and Acronyms 

Θc  Coverage 

𝐚𝐚𝑖𝑖  Primitive lattice vector 

𝐱𝐱�  Unit vector along Cartesian 𝑥𝑥-axis  

𝐲𝐲�  Unit vector along Cartesian 𝑦𝑦-axis 

𝐳𝐳�  Unit vector along Cartesian 𝑧𝑧-axis 

𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 The 1-dimensional array at lattice cell (𝑖𝑖, 𝑗𝑗,𝑘𝑘) holding double 
precision floating-point values 

𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Some measure of the propensities in the part of the lattice owned by 
a given MPI process in a parallel kMC simulation that determines 
the parallel global time step 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 when an adaptive time step is used. 
Which measure of propensities is used depends on the choice of 
adaptive time step scheme. 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⁄ . 

𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 The 1-dimensional array at lattice cell (𝑖𝑖, 𝑗𝑗,𝑘𝑘) holding integer values 

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  Number of MPI processes 

𝑘𝑘𝐵𝐵  Boltzmann’s constant 

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  Prefactor to adjust parallel global time step 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  Size of global time step in approximate parallel kMC simulation 

𝜈𝜈0  Attempt frequency 

ℎ  Planck’s constant 

𝐹𝐹  Deposition flux 

𝑃𝑃𝑃𝑃(𝑁𝑁)  Parallel efficiency for 𝑁𝑁 MPI processes 

𝑆𝑆(𝑁𝑁)  Parallel speedup for 𝑁𝑁 MPI processes 

𝑇𝑇  Temperature 

𝑎𝑎  Lattice constant 

𝜃𝜃  Angle of incidence of a depositing particle 

DCMT  Dynamic Creator of Mersenne Twister 

fcc  face-centered cubic 
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kMC  kinetic Monte Carlo 

ML  monolayer(s) 

MPI  Message Passing Interface 

SPPARKS Stochastic Parallel PARticle Kinetic Simulator 

XML  Extensible Markup Language 
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